115 research outputs found

    Eliminating bovine tuberculosis in cattle and badgers: insight from a dynamic model.

    Get PDF
    Bovine tuberculosis (BTB) is a multi-species infection that commonly affects cattle and badgers in Great Britain. Despite years of study, the impact of badgers on BTB incidence in cattle is poorly understood. Using a two-host transmission model of BTB in cattle and badgers, we find that published data and parameter estimates are most consistent with a system at the threshold of control. The most consistent explanation for data obtained from cattle and badger populations includes within-host reproduction numbers close to 1 and between-host reproduction numbers of approximately 0.05. In terms of controlling infection in cattle, reducing cattle-to-cattle transmission is essential. In some regions, even large reductions in badger prevalence can have a modest impact on cattle infection and a multi-stranded approach is necessary that also targets badger-to-cattle transmission directly. The new perspective highlighted by this two-host approach provides insight into the control of BTB in Great Britain.The work and E.B.-P.’s fellowship was funded by the EPSRC (EP/H027270/1). J.L.N.W. is supported by the Alborada Trust, the RAPIDD program of the Science & Technology Directorate, US Department of Homeland Security, the Fogarty International Center, US National Institutes of Health, the European Union FP7 project ANTIGONE (contract number 278976) and by BBSRC grant BB/I012192/1.This is the final version. It was first published by Royal Society Publishing at http://rspb.royalsocietypublishing.org/content/282/1808/20150374

    Sheep scab transmission:a spatially explicit dynamic metapopulation model

    Get PDF

    Sheep scab spatial distribution: the roles of transmission pathways

    Get PDF
    Abstract Background Ovine psoroptic mange (sheep scab) is a highly pathogenic contagious infection caused by the mite Psoroptes ovis. Following 21 years in which scab was eradicated in the UK, it was inadvertently reintroduced in 1972 and, despite the implementation of a range of control methods, its prevalence increased steadily thereafter. Recent reports of resistance to macrocyclic lactone treatments may further exacerbate control problems. A better understanding of the factors that facilitate its transmission are required to allow improved management of this disease. Transmission of infection occurs within and between contiguous sheep farms via infected sheep-to-sheep or sheep–environment contact and through long-distance movements of infected sheep, such as through markets. Methods A stochastic metapopulation model was used to investigate the impact of different transmission routes on the spatial pattern of outbreaks. A range of model scenarios were considered following the initial infection of a cluster of highly connected contiguous farms. Results Scab spreads between clusters of neighbouring contiguous farms after introduction but when long-distance movements are excluded, infection then self-limits spatially at boundaries where farm connectivity is low. Inclusion of long-distance movements is required to generate the national patterns of disease spread observed. Conclusions Preventing the movement of scab infested sheep through sales and markets is essential for any national management programme. If effective movement control can be implemented, regional control in geographic areas where farm densities are high would allow more focussed cost-effective scab management. Graphical Abstrac

    Assessing the effectiveness of prophylactic treatment strategies for sheep scab

    Get PDF
    Ovine psoroptic mange (sheep scab) is a condition caused by a hypersensitivity response to the ectoparasitic mite, Psoroptes ovis. It is an animal welfare concern and causes extensive economic losses to the sheep industry worldwide. More effective scab management is required to limit increases in infection prevalence, particularly given growing concerns over acaricide resistance. Here, a stochastic metapopulation model is used to explore the effectiveness of a range of prophylactic acaricide treatment strategies in comparison to no intervention. Over a simulated one-year period, movement control, based on the prophylactic treatment of animals being moved in sales, followed by farm biosecurity of bought in animals, was shown to be the most effective at reducing scab risk and more cost-effective than no intervention. Localised targeting of prophylaxis in areas of high scab prevalence was more effective than using prophylaxis at random, however, this localised effect declined post-treatment because of the import of infected animals. The analysis highlights the role of the movement of infected animals in maintaining high levels of scab infection and the importance of reducing this route of transmission to allow localised management to be effective

    Defining the population attributable fraction for infectious diseases

    Get PDF

    Estimating the effect of the 2005 change in BCG policy in England:a retrospective cohort study, 2000 to 2015

    Get PDF
    BackgroundIn 2005 in England, universal Bacillus Calmette-Guérin (BCG) vaccination of school-age children was replaced by targeted BCG vaccination of high-risk neonates.AimEstimate the impact of the 2005 change in BCG policy on tuberculosis (TB) incidence rates in England.MethodsWe conducted an observational study by combining notifications from the Enhanced Tuberculosis Surveillance system, with demographic data from the Labour Force Survey to construct retrospective cohorts relevant to both the universal and targeted vaccination between 1 January 2000 and 31 December 2010. We then estimated incidence rates over a 5-year follow-up period and used regression modelling to estimate the impact of the change in policy on TB.ResultsIn the non-United Kingdom (UK) born, we found evidence for an association between a reduction in incidence rates and the change in BCG policy (school-age incidence rate ratio (IRR): 0.74; 95% credible interval (CrI): 0.61 to 0.88 and neonatal IRR: 0.62; 95%CrI: 0.44 to 0.88). We found some evidence that the change in policy was associated with an increase in incidence rates in the UK born school-age population (IRR: 1.08; 95%CrI: 0.97 to 1.19) and weaker evidence of an association with a reduction in incidence rates in UK born neonates (IRR: 0.96; 95%CrI: 0.82 to 1.14). Overall, we found that the change in policy was associated with directly preventing 385 (95%CrI: -105 to 881) cases.ConclusionsWithdrawing universal vaccination at school age and targeting vaccination towards high-risk neonates was associated with reduced incidence of TB. This was largely driven by reductions in the non-UK born with cases increasing in the UK born

    Epidemic predictions in an imperfect world : modelling disease spread with partial data

    Get PDF
    ‘Big-data’ epidemic models are being increasingly used to influence government policy to help with control and eradication of infectious diseases. In the case of livestock, detailed movement records have been used to parametrize realistic transmission models. While livestock movement data are readily available in the UK and other countries in the EU, in many countries around the world, such detailed data are not available. By using a comprehensive database of the UK cattle trade network, we implement various sampling strategies to determine the quantity of network data required to give accurate epidemiological predictions. It is found that by targeting nodes with the highest number of movements, accurate predictions on the size and spatial spread of epidemics can be made. This work has implications for countries such as the USA, where access to data is limited, and developing countries that may lack the resources to collect a full dataset on livestock movements

    Reassessing the evidence for universal school-age BCG vaccination in England and Wales: re-evaluating and updating a modelling study

    Get PDF
    OBJECTIVES: In 2005, England and Wales switched from universal BCG vaccination against tuberculosis (TB) disease for school-age children to targeted vaccination of neonates. We aimed to recreate and re-evaluate a previously published model, the results of which informed this policy change. DESIGN: We recreated an approach for estimating the impact of ending the BCG schools scheme, correcting a methodological flaw in the model, updating the model with parameter uncertainty and improving parameter estimates where possible. We investigated scenarios for the assumed annual decrease in TB incidence rates considered by the UK's Joint Committee on Vaccination and Immunisation and explored alternative scenarios using notification data. SETTING: England and Wales. OUTCOME MEASURES: The number of vaccines needed to prevent a single notification and the average annual additional notifications caused by ending the policy change. RESULTS: The previously published model was found to contain a methodological flaw and to be spuriously precise. It greatly underestimated the impact of ending school-age vaccination compared with our updated, corrected model. The updated model produced predictions with wide CIs when parameter uncertainty was included. Model estimates based on an assumption of an annual decrease in TB incidence rates of 1.9% were closest to those estimated using notification data. Using this assumption, we estimate that 1600 (2.5; 97.5% quantiles: 1300, 2000) vaccines would have been required to prevent a single notification in 2004. CONCLUSIONS: The impact of ending the BCG schools scheme was found to be greater than previously thought when notification data were used. Our results highlight the importance of independent evaluations of modelling evidence, including uncertainty, and evaluating multiple scenarios when forecasting the impact of changes in vaccination policy

    Modelling that shaped the early COVID-19 pandemic response in the UK.

    Get PDF
    Infectious disease modelling has played an integral part of the scientific evidence used to guide the response to the COVID-19 pandemic. In the UK, modelling evidence used for policy is reported to the Scientific Advisory Group for Emergencies (SAGE) modelling subgroup, SPI-M-O (Scientific Pandemic Influenza Group on Modelling-Operational). This Special Issue contains 20 articles detailing evidence that underpinned advice to the UK government during the SARS-CoV-2 pandemic in the UK between January 2020 and July 2020. Here, we introduce the UK scientific advisory system and how it operates in practice, and discuss how infectious disease modelling can be useful in policy making. We examine the drawbacks of current publishing practices and academic credit and highlight the importance of transparency and reproducibility during an epidemic emergency. This article is part of the theme issue 'Modelling that shaped the early COVID-19 pandemic response in the UK'
    • …
    corecore